If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-480=0
a = 1; b = -40; c = -480;
Δ = b2-4ac
Δ = -402-4·1·(-480)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{55}}{2*1}=\frac{40-8\sqrt{55}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{55}}{2*1}=\frac{40+8\sqrt{55}}{2} $
| (2x+15)=-5(3x-1) | | x+(x*18/100)=850 | | -2x+4-2x=1-x | | 5(8–x)+36=102–2(3x+24) | | (p-7)=-17 | | 4x-8x+68=3x+40 | | 3x+6/x=9x+12 | | 7x−5=44 | | 2x-6=-5x+20 | | 3^3=2^x | | (x+96)=(24+96) | | (4x-12)(x+9)=0 | | 3(x-3)=4x-4+3(7-x) | | 5a+1=2a=10 | | 5x-15=2x+48 | | 2/3x+7=-13 | | 3*40+-2y+6y=144 | | 4z=5/4 | | 7x=60+2 | | 1/2(2x-4)=4x-5 | | 2(x-5)+2(x+1)=6x-1 | | 17j+7=-23+2j | | 4^2+9^2-x=2x | | 6x+8x-9=107 | | 3/5n+3=24 | | x*18/100=850 | | 3x-2x+4x=25হলেxএরমানকত | | 3x+2(x+2)=9 | | 3m=m+18 | | 32x+7x-38=50 | | 2x+10=8x-3 | | 36+¾y=44 |